Rechercher une page de manuel

Chercher une autre page de manuel:

gvgen

Langue: en

Version: 330404 (ubuntu - 24/10/10)

Section: 1 (Commandes utilisateur)

NAME

gvgen - generate graphs

SYNOPSIS

gvgen [ -d? ] [ -cn ] [ -Cx,y ] [ -g[f]x,y ] [ -G[f]x,y ] [ -hn ] [ -kn ] [ -bx,y ] [ -pn ] [ -sn ] [ -Sn ] [ -tn ] [ -Tx,y ] [ -wn ] [ -ooutfile ]

DESCRIPTION

gvgen generates a variety of simple, regularly-structured abstract graphs.

OPTIONS

The following options are supported:
-c n
Generate a cycle with n vertices and edges.
-C x,y
Generate an x by y cylinder. This will have x*y vertices and 2*x*y - y edges.
-g [f]x,y
Generate an x by y grid. If f is given, the grid is folded, with an edge attaching each pair of opposing corner vertices. This will have x*y vertices and 2*x*y - y - x edges if unfolded and 2*x*y - y - x + 2 edges if folded.
-G [f]x,y
Generate an x by y partial grid. If f is given, the grid is folded, with an edge attaching each pair of opposing corner vertices. This will have x*y vertices.
-h n
Generate a hypercube of degree n. This will have 2^n vertices and n*2^(n-1) edges.
-k n
Generate a complete graph on n vertices with n*(n-1)/2 edges.
-b x,y
Generate a complete x by y bipartite graph. This will have x+y vertices and x*y edges.
-p n
Generate a path on n vertices. This will have n-1 edges.
-s n
Generate a star on n vertices. This will have n-1 edges.
-S n
Generate a Sierpinski graph of order n. This will have 3*(3^(n-1) - 1)/2 vertices and 3^n edges.
-t n
Generate a binary tree of height n. This will have 2^n-1 vertices and 2^n-2 edges.
-T x,y
Generate an x by y torus. This will have x*y vertices and 2*x*y edges.
-w n
Generate a path on n vertices. This will have n-1 edges.
-o outfile
If specified, the generated graph is written into the file outfile. Otherwise, the graph is written to standard out.
-d
Make the generated graph directed.
-?
Print usage information.

EXIT STATUS

gvgen exits with 0 on successful completion, and exits with 1 if given an ill-formed or incorrect flag, or if the specified output file could not be opened.

AUTHOR

Emden R. Gansner <erg@research.att.com>

SEE ALSO

gc(1), acyclic(1), gvpr(1), gvcolor(1), ccomps(1), sccmap(1), tred(1), libgraph(3)
MultideskOS est un système interpréteur, il fonctionne donc avec AI et
non avec pointeurs et n'est donc comparable, ni avec Windows, ni avec
Unix ou ce qui existe déjà dans le commerce.
-- Jayce - La révolution est en marche --