r.terraflow

Langue: en

Version: 146158 (fedora - 04/07/09)

Section: 1 (Commandes utilisateur)

NAME

r.terraflow - Flow computation for massive grids (Float version).

KEYWORDS

SYNOPSIS

r.terraflow
r.terraflow help
r.terraflow [-sq] elev=string filled=string direction=string swatershed=string accumulation=string tci=string [d8cut=float] [memory=integer] [STREAM_DIR=string] [stats=string] [--overwrite] [--verbose] [--quiet]

Flags:

-s

SFD (D8) flow (default is MFD)
-q

Quiet
--overwrite

Allow output files to overwrite existing files
--verbose

Verbose module output
--quiet

Quiet module output

Parameters:

elev=string

Input elevation grid
filled=string

Output (filled) elevation grid
direction=string

Output direction grid
swatershed=string

Output sink-watershed grid
accumulation=string

Output accumulation grid
tci=string

Output tci grid
d8cut=float

If flow accumulation is larger than this value it is routed using SFD (D8) direction

                 (meaningfull only  for MFD flow)

Default: infinity
memory=integer

Main memory size (in MB)
Default: 300
STREAM_DIR=string

Location of intermediate STREAMs
Default: /var/tmp
stats=string

Stats file
Default: stats.out

NAME r.terraflow - computation of flow

direction, flow accumulation and other basic topographic terrain indices from a raster digital elevation model (DEM).

(GRASS Raster Program)

SYNOPSIS

r.terraflow
r.terraflow help
r.terraflow [ -sq ] elev=name filled=name direction=name swatershed=name accumulation=name tci=name [d8cut=value] [memory=value] [STREAM_DIR=name] [stats=name]

DESCRIPTION

r.terraflow takes as input a raster digital elevation model (DEM) and computes the flow direction raster and the flow accumulation raster, as well as the flooded elevation raster, sink-watershed raster (partition into watersheds around sinks) and tci (topographic convergence index) raster.

r.terraflow computes these rasters using well-known approaches, with the difference that its emphasis is on the computational complexity of the algorithms, rather than on modeling realistic flow. r.terraflow emerged from the necessity of having scalable software able to process efficiently very large terrains. It is based on theoretically optimal algorithms developed in the framework of I/O-efficient algorithms. r.terraflow was designed and optimized especially for massive grids and is able to process terrains which were impractical with similar functions existing in other GIS systems.

Flow directions are computed using either the MFD (Multiple Flow Direction) model or the SFD (Single Flow Direction, or D8) model, illustrated below. Both methods compute downslope flow directions by inspecting the 3-by-3 window around the current cell. The SFD method assigns a unique flow direction towards the steepest downslope neighbor. The MFD method assigns multiple flow directions towards all downslope neighbors.



Flow direction to steepest

 downslope neighbor (SFD). Flow direction to all

 downslope neighbors (MFD).

The SFD and the MFD method cannot compute flow directions for cells which have the same height as all their neighbors (flat areas) or cells which do not have downslope neighbors (one-cell pits).

On plateaus (flat areas that spill out) r.terraflow routes flow so that globally the flow goes towards the spill cells of the plateaus.
On sinks (flat areas that do not spill out, including one-cell pits) r.terraflow assigns flow by flooding the terrain until all the sinks are filled and assigning flow directions on the filled terrain.

In order to flood the terrain, r.terraflow identifies all sinks and partitions the terrain into sink-watersheds (a sink-watershed contains all the cells that flow into that sink), builds a graph representing the adjacency information of the sink-watersheds, and uses this sink-watershed graph to merge watersheds into each other along their lowest common boundary until all watersheds have a flow path outside the terrain. Flooding produces a sink-less terrain in which every cell has a downslope flow path leading outside the terrain and therefore every cell in the terrain can be assigned SFD/MFD flow directions as above.

Once flow directions are computed for every cell in the terrain, r.terraflow computes flow accumulation by routing water using the flow directions and keeping track of how much water flows through each cell. r.terraflow also computes the tci raster (topographic convergence index, defined as the logarithm of the ratio of flow accumulation and local slope).

For more details on the algorithms see [1,2,3].

OPTIONS

The program will run non-interactively if the user specifies program arguments and flag settings on the command line using the following form:

r.terraflow [ -sq ] elev=name filled=name direction=name swatershed=name accumulation=name tci=name [d8cut=value] [memory=value] [STREAM_DIR=name] [stats=name]

Alternatively, the user can simply type r.terraflow on the command line and the program will ask for parameter values and flag settings interactively, using the standard GRASS parser interface.

Flags:

-s

Use SFD (D8) flow. By default MFD flow is used.
-q

Run quietly (do not display status messages). By default

Parameters:

elev=name

Input elevation raster. Required.
filled=name


 Output filled (flooded) elevation raster. Required.
direction =name


 Output flow direction raster. Required.
swatershed =name


 Output sink-watershed raster. Required.
accumulation =name

Output flow accumulation raster. Required.
tci =name


 Output topographic convergence index (tci) raster. Required.
[d8cut =value]


 If flow accumulation of a cell is larger than this value, then the flow of this cell is routed to its neighbors using the SFD (D8) model. This option affects only the flow accumulation raster and is meaningfull only for MFD flow (i.e. if the -s flag is not used); If this option is used for SFD flow it is ignored. The default value of d8cut is infinity.
[memory =value (in MB)]


 The main memory size (in MB) to be used by r.terraflow. In practice value should be an underestimate of the amount of available (free) main memory on the machine. r.terraflow will use at all times at most this much memory, and the virtual memory system will never be in use. The default value is 300 MB.
[STREAM_DIR =path name]


 Location of the intermediate files generated by r.terraflow. The default location is /var/tmp.
[stats =name]


 The name of the file that contains the statistics (stats) of the run. The default name is stats.out (in the current directory).

Examples


 r.terraflow elev=spearfish filled=spearfish-filled dir=spearfish-mfdir swatershed=spearfish-watershed accumulation=spearfish-accu tci=spearfish-tci

 r.terraflow elev=spearfish filled=spearfish-filled dir=spearfish-mfdir swatershed=spearfish-watershed accumulation=spearfish-accu tci=spearfish-tci d8cut=500 memory=800 STREAM-DIR=/var/tmp/ stats=spearfish-stats.txt

NOTES

One of the techniques used by r.terraflow is the space-time trade-off. In particular, in order to avoid searches, which are I/O-expensive, r.terraflow computes and works with an augmented elevation raster in which each cell stores relevant information about its 8 neighbors, in total up to 80B per cell. As a result r.terraflow works with intermediate temporary files that may be up to 80N bytes, where N is the number of cells (rows x columns) in the elevation raster (more precisely, 80K bytes, where K is the number of valid (not nodata) cells in the input elevation raster). All this intermediate temporary files are stored in the path specified by STREAM_DIR. Note: STREAM_DIR must contain enough free disk space in order to store up to 2 x 80N bytes.

The internal type used by r.terraflow to store elevations can be defined at compile-time. By default, r.terraflow is compiled to store elevations internally as floats. A version which is compiled to store elevations internally as shorts is available as r.terraflow.short. Other versions can be created by the user if needed.

r.terraflow.short uses less space (up to 60B per cell, up to 60N intermediate file) and therefore is more space and time efficient. r.terraflow is intended for use with floating point raster data (FCELL), and r.terraflow.short with integer raster data (CELL) in which the maximum elevation does not exceed the value of a short SHRT_MAX=32767 (this is not a constraint for any terrain data of the Earth, if elevation is stored in meters).

Both r.terraflow and r.terraflow.short work with input elevation rasters which can be either integer, floating point or double (CELL, FCELL, DCELL). If the input raster contains a value that exceeds the allowed internal range (short for r.terraflow.short, float for r.terraflow), the program exits with a warning message. Otherwise, if all values in the input elevation raster are in range, they will be converted (truncated) to the internal elevation type (short for r.terraflow.short, float for r.terraflow). In this case precision may be lost and artificial flat areas may be created.

For instance, if r.terraflow.short is used with floating point raster data (FCELL or DCELL), the values of the elevation will be truncated as shorts. This may create artificial flat areas, and the outpus of r.terraflow.short may be less realistic than those of r.terraflow on floating point raster data. The outputs of r.terraflow.short and r.terraflow are identical on integer raster data (CELL).

SEE ALSO

The <a href="http://www.cs.duke.edu/geo*/terraflow/">TerraFlow project at Duke University
r.flow, r.basins.fill, r.drain, r.topidx, r.topmodel, r.water.outlet, r.watershed

AUTHORS

Original version of program: The <a
href="http://www.cs.duke.edu/geo*/terraflow/">TerraFlow project, 1999, Duke University.
Lars Arge, Jeff Chase, Pat Halpin, Laura Toma, Dean Urban, Jeff Vitter, Rajiv Wickremesinghe.
Porting for GRASS, 2002:


 Lars Arge, Helena Mitasova, Laura Toma.
Contact: Laura Toma

REFERENCES

1
<A NAME="arge:drainage" HREF="http://www.cs.duke.edu/geo*/terraflow/papers/alenex00_drainage.ps.gz"> I/O-efficient algorithms for problems on grid-based terrains. Lars Arge, Laura Toma, and Jeffrey S. Vitter. In Proc. Workshop on Algorithm Engineering and Experimentation, 2000. To appear in Journal of Experimental Algorithms.
2
<A NAME="terraflow:acmgis01" HREF="http://www.cs.duke.edu/geo*/terraflow/papers/acmgis01_terraflow.pdf"> Flow computation on massive grids. Lars Arge, Jeffrey S. Chase, Patrick N. Halpin, Laura Toma, Jeffrey S. Vitter, Dean Urban and Rajiv Wickremesinghe. In Proc. ACM Symposium on Advances in Geographic Information Systems, 2001.
3
<A NAME="terraflow:geoinformatica" HREF="http://www.cs.duke.edu/geo*/terraflow/papers/journal_terraflow.pdf"> Flow computation on massive grid terrains. Lars Arge, Jeffrey S. Chase, Patrick N. Halpin, Laura Toma, Jeffrey S. Vitter, Dean Urban and Rajiv Wickremesinghe. To appear in GeoInformatica, International Journal on Advances of Computer Science for Geographic Information Systems.

Last changed: $Date: 2006-09-22 16:57:14 +0200 (Fri, 22 Sep 2006) $