Rechercher une page de manuel
v.lidar.correction.1grass
Langue: en
Version: 337611 (ubuntu - 24/10/10)
Section: 1 (Commandes utilisateur)
Sommaire
NAME
v.lidar.correction - Correction of the v.lidar.growing output. It is the last of the three algorithms for LIDAR filtering.KEYWORDS
vector, LIDARSYNOPSIS
v.lidar.correctionv.lidar.correction help
v.lidar.correction [-e] input=name output=name terrain=name [sce=float] [scn=float] [lambda_c=float] [tch=float] [tcl=float] [--overwrite] [--verbose] [--quiet]
Flags:
- -e
Estimate point density and distance
Estimate point density and distance for the input vector points within the current region extends and quit- --overwrite
Allow output files to overwrite existing files- --verbose
Verbose module output- --quiet
Quiet module output
Parameters:
- input=name
Input observation vector map name (v.lidar.growing output)- output=name
Output classified vector map name- terrain=name
Only 'terrain' points output vector map- sce=float
Interpolation spline step value in east direction
Default: 25- scn=float
Interpolation spline step value in north direction
Default: 25- lambda_c=float
Regularization weight in reclassification evaluation
Default: 1- tch=float
High threshold for object to terrain reclassification
Default: 2- tcl=float
Low threshold for terrain to object reclassification
Default: 1
DESCRIPTION
v.lidar.correction is the last of three steps to filter LiDAR data. The filter aims to recognize and extract attached and detached object (such as buildings, bridges, power lines, trees, etc.) in order to create a Digital Terrain Model.The module, which could be iterated several times, makes a comparison between the LiDAR observations and a bilinear spline interpolation with a Tychonov regularization parameter performed on the TERRAIN SINGLE PULSE points only. The gradient is minimized by the regularization parameter. Analysis of the residuals between the observations and the interpolated values results in four cases (the next classification is referred to that of the v.lidar.growing output vector):
a) Points classified as TERRAIN differing more than a threshold value are interpreted and reclassified as OBJECT, for both single and double pulse points.
b) Points classified as OBJECT and closed enough to the interpolated surface are interpreted and reclassified as TERRAIN, for both single and double pulse points.
NOTES
The input should be the output of v.lidar.growing module or the output of this v.lidar.correction itself. That means, this module could be applied more times (although, two are usually enough) for a better filter solution. The outputs are a vector map with a final point classification as as TERRAIN SINGLE PULSE, TERRAIN DOUBLE PULSE, OBJECT SINGLE PULSE or OBJECT DOUBLE PULSE; and an vector map with only the points classified as TERRAIN SINGLE PULSE or TERRAIN DOUBLE PULSE. The final result of the whole procedure (v.lidar.edgedetection, v.lidar.growing, v.lidar.correction) will be a point classification in four categories:TERRAIN SINGLE PULSE (cat = 1, layer = 2)
TERRAIN DOUBLE PULSE (cat = 2, layer = 2)
OBJECT SINGLE PULSE (cat = 3, layer = 2)
OBJECT DOUBLE PULSE (cat = 4, layer = 2)
EXAMPLES
Basic correction procedure
v.lidar.correction input=growing output=correction out_terrain=only_terrain
Second correction procedure
v.lidar.correction input=correction output=correction_bis out_terrain=only_terrain_bis
SEE ALSO
v.lidar.edgedetection, v.lidar.growing, v.surf.bsplineAUTHORS
Original version of program in GRASS 5.4:Maria Antonia Brovelli, Massimiliano Cannata, Ulisse Longoni and Mirko Reguzzoni
Update for GRASS 6.X:
Roberto Antolin and Gonzalo Moreno
REFERENCES
Antolin, R. et al., 2006. Digital terrain models determination by LiDAR technology: Po basin experimentation. Bolletino di Geodesia e Scienze Affini, anno LXV, n. 2, pp. 69-89.Brovelli M. A., Cannata M., Longoni U.M., 2004. LIDAR Data Filtering and DTM Interpolation Within GRASS, Transactions in GIS, April 2004, vol. 8, iss. 2, pp. 155-174(20), Blackwell Publishing Ltd.
Brovelli M. A., Cannata M., 2004. Digital Terrain model reconstruction in urban areas from airborne laser scanning data: the method and an example for Pavia (Northern Italy). Computers and Geosciences 30 (2004) pp.325-331
Brovelli M. A. and Longoni U.M., 2003. Software per il filtraggio di dati LIDAR, Rivista dell?Agenzia del Territorio, n. 3-2003, pp. 11-22 (ISSN 1593-2192).
Brovelli M. A., Cannata M. and Longoni U.M., 2002. DTM LIDAR in area urbana, Bollettino SIFET N.2, pp. 7-26.
Performances of the filter can be seen in the ISPRS WG III/3 Comparison of Filters report by Sithole, G. and Vosselman, G., 2003.
Last changed: $Date: 2007-10-18 15:40:28 +0200 (gio, 18 ott 2007) $
Full index
© 2003-2010 GRASS Development Team
Contenus ©2006-2024 Benjamin Poulain
Design ©2006-2024 Maxime Vantorre