Rechercher une page de manuel

Chercher une autre page de manuel:

coqide

Langue: en

Version: 265196 (debian - 07/07/09)

Section: 1 (Commandes utilisateur)

NAME

coqide - The Coq Proof Assistant graphical interface

SYNOPSIS

coqide [ options ]

DESCRIPTION

coqtop is a gtk graphical interface for the Coq proof assistant.

For command-line-oriented use of Coq, see coqide(1) ; for batch-oriented use of Coq, see coqc(1).

OPTIONS

-h
Show the complete list of options accepted by coqide.
-I dir, -include dir
Add directory dir in the include path.
-R dir coqdir
Recursively map physical dir to logical coqdir.
-src
Add source directories in the include path.
-is f, -inputstate f
Read state from f.coq.
-nois
Start with an empty state.
-outputstate f
Write state in file f.coq.
-load-ml-object f
Load ML object file f.
-load-ml-source f
Load ML file f.
-l f, -load-vernac-source f
Load Coq file f.v (Load f.).
-lv f, -load-vernac-source-verbose f
Load Coq file f.v (Load Verbose f.).
-load-vernac-object f
Load Coq object file f.vo.
-require f
Load Coq object file f.vo and import it (Require f.).
-compile f
Compile Coq file f.v (implies -batch).
-compile-verbose f
Verbosely compile Coq file f.v (implies -batch).
-opt
Run the native-code version of Coq or Coq_SearchIsos.
-byte
Run the bytecode version of Coq or Coq_SearchIsos.
-where
Print Coq's standard library location and exit.
-v
Print Coq version and exit.
-q
Skip loading of rcfile.
-init-file f
Set the rcfile to f.
-user u
Use the rcfile of user u.
-batch
Batch mode (exits just after arguments parsing).
-boot
Boot mode (implies -q and -batch).
-emacs
Tells Coq it is executed under Emacs.
-dump-glob f
Dump globalizations in file f (to be used by coqdoc(1)).
-impredicative-set
Set sort Set impredicative.
-dont-load-proofs
Don't load opaque proofs in memory.
-xml
Export XML files either to the hierarchy rooted in the directory COQ_XML_LIBRARY_ROOT (if set) or to stdout (if unset).

SEE ALSO

coqc(1), coqtop(1), coq-tex(1), coqdep(1).
The Coq Reference Manual, The Coq web site: http://coq.inria.fr, /usr/share/doc/coqide/FAQ.

AUTHOR

This manual page was written by Samuel Mimram <samuel.mimram@ens-lyon.org>, for the Debian project (but may be used by others).
Une démonstration d'un théorème (T) peut se définir comme un chemin qui,
partant de propositions empruntées au tronc commun et de ce fait
intelligibles par tous, conduit par étapes successives à une situation
psychologique telle que (T) apparaît comme évidente.
-+- René Thom, Mathématiques modernes et mathématiques de
toujours -+-